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SUMMARY

The emergence of non-linear dynamics in cavity mixing is examined using the boundary element method
(BEM). The method is implemented for the simulation of three-dimensional transient creeping flow of
Newtonian or linear viscoelastic fluids of the Jeffreys type. A boundary only formulation in the time
domain is proposed for viscoelastic flow. Special emphasis is placed on cavity flow involving multiply
connected moving domains. The BEM becomes particularly suited for this case, when part of the
boundary (stirrer or rotor) is moving, and the remaining outer part (cavity) is at rest. In contrast to
conventional volume methods, the BEM is shown to be much easier to implement since the kinematics
of the elements bounding the fluid is known (imposed). It is found that, for a simple cavity flow induced
by a rotating vane at constant angular velocity, the tractions at the vane tip and cavity face exhibit
non-linear periodic dynamical behaviour with time for fluids obeying linear constitutive equations.
Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Mixing flows constitute a class of the moving boundary type that remains relatively unex-
plored owing to its geometric complexity. Typically, the flow domain separates two
boundaries: the outer boundary (cavity), which is stationary, and the inner boundary (translat-
ing and/or rotating stirrer), which moves and induces the flow. In addition to the presence of
a moving boundary in such problems, the flow involved is unsteady. Typically, the flow
becomes periodic after initial transients have died out following the early stages of the process.
Periodic behaviour results, obviously from the periodicity in geometry and regularity in the
stirring motion. The time a flow takes to reach steady periodic motion is strongly influenced
by the inertia and elasticity of the fluid.

For moving boundary problems, the implementation of conventional volume methods, such
as the finite element method (FEM), can often be extremely costly given the requirement for
domain remeshing at each time step of the procedure, especially for complex three-dimensional
flow. Remeshing or mesh refinement is not required when a boundary integral approach, such
as the boundary element method (BEM), is used. The BEM mesh is confined to the
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boundary(ies) of the flow domain. The BEM offers the obvious advantage when dealing with
moving domain problems as it necessitates only the discretization of the boundary and not that
of the inner volume domain. The three-dimensional problem is therefore reduced to computing
the flow field on the two-dimensional boundary. For example, for the flow inside a cavity
induced by the movement of a stirrer; only the (inner) cavity wall together with the (outer)
surface of the stirrer need to be discretized.

Modelling of the mixing process has been extensively studied in the transition or turbulent
regime [1–4], but less so for the laminar regime, especially of viscoelastic fluids. Chien et al.
[5] proposed a versatile experimental set-up to generate various low-Reynolds number situa-
tions in closed long cavities and to visualize streamlines. In that study, the essentially planar
flow was examined, together with the deviation of the velocity component in the direction
perpendicular to the plane of the flow. A comparison between photographs taken under
different flow conditions and numerical predictions of the FEM results led to an excellent
agreement. The efficiency of the mixing process was also assessed according to the dimension-
less frequency of oscillation for each flow configuration. Alternate periodic flows were found
to be more efficient from the mixing viewpoint than steady flows since they are not always
integrable and may lead to the presence of a Smale horseshoe function [6] and chaotic
behaviour. More recently, Leong and Ottino [7] studied, in detail, the macroscopic structures
of chaotic mixing. The experimental stretching rate was taken as a mixing criterion for several
conditions of flow bifurcation, birth and collapse of islands. The lid-driven rectangular-shaped
cavity flow problem was investigated by Cortes and Miller [8]. Simulations were carried out
using the spectral method for two- and three-dimensional flows for the Laplace and Navier–
Stokes equations, with the pressure-correction at Reynolds numbers up to 10000. The
algorithm was quite efficient, requiring very modest computing resources for the type of
problem investigated.

The mixing of polymer blends was simulated by Graman et al. [9] using the BEM for a
two-dimensional non-Newtonian flow and advective heat transfer. The convective non-lineari-
ties in the energy equation and non-linearities related to the non-Newtonian nature of the flow
were treated using the dual-reciprocity BEM, a method proved to be numerically stable. The
dynamics of vortex formation in a cavity flow was studied by Gustafson and Halasi [10] for
a wide range of Reynolds numbers, from 10−6 to 2000, and various aspect ratios. These
authors computed unsteady two-dimensional solutions using the finite difference (control
volume) method with Euler explicit time stepping. Velocity distributions, pressure gradients as
well as the kinetic energy, eddy centres, secondary eddy separations and coalescence were
computed and validated against earlier data. Bruneau and Jouron [11] predicted numerically
the formation of vortex flow in two-dimensional cavities at higher Reynolds numbers (100–
5000), and described the limit conditions for the onset of turbulence. Various numerical
techniques were used, consisting of the finite difference method (FDM) with staggered grids
for the treatment of the convection terms in the Navier–Stokes equations and the relaxation
for all the variables. At still higher Reynolds numbers, the transition to turbulence and
bifurcation phenomena in a two-dimensional cavity were predicted to occur; the reader is
referred to the works of Goodrich et al. [12] and Jie Shen [13] for further details.

The present paper examines a three-dimensional mixing flow induced by the rotation of a
stirrer inside a cavity. Although the fluids investigated obey linear constitutive equations, the
flow exhibits a rich sequence of non-linear behaviour. The fluids examined are creeping
Newtonian and linear viscoelastic of the Oldroyd-B type. A similar non-linear dynamical
behaviour is usually expected in the presence of non-linear effects, such as fluid inertia or
elasticity (normal stresses that lead to the well-known rod climbing Weissenberg phenomenon).
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Using low-dimensional dynamical systems, Khayat [14–19] examined extensively the influence
of fluid elasticity on the stability and bifurcation of flows of highly elastic polymeric solutions.
These are the well-known Boger fluids, which obey the Oldroyd-B constitutive equation [20].
The studies focused on the emergence of non-linear dynamics in simple flow configurations,
such as the flow between two concentric co-rotating cylinders (Taylor–Couette flow) [14,15]
and the thermal convection between two parallel plates (Rayleigh–Benard convection) [16–
19]. It is found that elasticity precipitates the onset of instability, but tends to regularize the
dynamics of the flow in the post-critical range. The validity of the low-dimensional system
approach was established by direct comparison with the experiments of Muller et al. [21];
excellent agreement was achieved [15]. Although efficient for a simple geometry and highly
non-linear fluids, this approach is inadequate for a complex three-dimensional flow. Only
linear Newtonian and viscoelastic fluids will be considered in the present study, given the
complexity of the flow configuration.

For non-linear viscoelastic problems, the BEM traditionally requires the discretization of a
volume integral, which includes all the non-linear terms in the form of a pseudo-body force
[22–25]. In this case, the major advantage of the BEM is lost as a result of the inner volume
discretization. More recent techniques, such as the methods of dual- and multiple-reciprocity,
have been developed to transform the volume integral into a boundary integral [26–29].
Although these methods still require the evaluation of the flow field at internal points, they do
not require the discretization of the inner domain, and the BEM retains its primary advantage.
However, the capability of such techniques to handle highly non-linear problems, such as flows
with strong inertia or (elastic) normal stress effects, remains questionable. The present work
will thus be limited to linear viscoelastic flow obeying the Oldroyd-B equation.

Unlike many existing BEM formulations for linear viscoelastic problems in the frequency
domain [30–32], the boundary integral equations in the current study are derived and solved
in the time domain. The derivation of the boundary integral equation for a viscoelastic flow is
based on the Laplace transform of the flow variables. The association of the integral transform
of the viscoelastic solution with that associated with the Newtonian flow problem is similar to
the correspondence principle for linear viscoelastic solids or the elastico-viscoelastic analogy
[32–34]. Although the derivation given here uses the Laplace transform, an analogous
procedure follows from the use of the Fourier transform. Read [35] was the first to recognize
this association through the Fourier transform, while Sips [36], Brull [37] and Lee [38] gave the
corresponding Laplace transform results. The present procedure involves replacing the viscos-
ity with the appropriate form in the transformed equations, and reinterpreting the transformed
flow variables as transformed viscoelastic field variables. The transformed equations are then
solved and the solution is inverted to obtain the evolution of the flow field with time. In the
present work, however, the inversion is avoided and the boundary integral equations are
derived in the time domain. A time marching scheme is then implemented for the discretization
of the time derivatives and the solution of the integral equations.

2. GOVERNING EQUATIONS, BOUNDARY AND INITIAL CONDITIONS

In this section, the governing equations and boundary conditions are briefly reviewed, together
with some of the assumptions adopted in the present study. The governing equations will be
discussed for a general flow of an incompressible viscoelastic fluid. The boundary and initial
conditions will then be discussed for the flow inside the cavity mixer, which will be analysed
in the present study.
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2.1. Go6erning equations

Consider a fluid occupying a three-dimensional region, V(t), that may change with time t.
The fluid is assumed to be an incompressible Newtonian or viscoelastic fluid. Inertia and body
forces are assumed negligible. The conservation of mass and linear momentum equations are
then given by

9 ·u(x, t)=0, 9 ·s(x, t)=0, x�V(t)@G(t), (1)

where 9 is the gradient operator, x is the position vector, u(x, t) is the velocity vector and s(x, t)
is the total stress tensor. The time derivative of the velocity, ((u/(t), in the momentum
conservation equation is neglected, so that for a Newtonian fluid, the formulation in question
is not strictly unsteady, but quasi-steady. This quasi-steady state assumption is valid whenever
L2/n�T, where L and T are typical characteristic length and time of the flow, and n is the
kinematic viscosity. In the present case, T�L/U, and U is a typical value of the driving velocity.
Thus, for the quasi-steady state assumption to apply, one must have the Reynolds number
UL/n�1. Thus, the quasi-steady assumption is equivalent to setting the Reynolds number equal
to zero. This is indeed typical of the case for fluids of interest to mixing problems. Physically,
the quasi-steady state approximation means that a Newtonian fluid immediately adjusts to
changes in the movement of the boundary or boundary conditions. This is not necessarily the
case for a viscoelastic fluid.

The fluids examined in the present study are polymer solutions of viscosity m. It is assumed
that the solution is composed of a polymer solute in a Newtonian solvent, with viscosities mp

and ms respectively. In this case, m=mp+ms. The total stress s(x, t) may then be expressed as
a sum of the Newtonian and elastic contributions, such that

s(x, t)= −p(x, t)I+msg(x, t)+t(x, t), (2)

where p(x, t) is the hydrostatic pressure, t(x, t) is the elastic part of the stress tensor, m is the
viscosity of the fluid, g(x, t)9u(x, t)+9ut(x, t) is the rate-of-strain tensor, and I is the identity
tensor. Let T(x, t) be the excess stress tensor, defined by

T(x, t)=msg(x, t)+t(x, t). (3)

Next, a suitable constitutive equation for T(x, t) is selected.
Generally, the flow is expected to be influenced significantly by the constitutive model. This

is typically the case when non-linear effects, such as shear thinning and normal stresses, are
accounted for in the model. However, in the linear range of flow, most constitutive equations
reduce to Maxwell’s model or one of its variants [20]. Thus, the flow behaviour of linear fluids
is not expected to depend on the constitutive model. For this reason, the choice of a model is
not critical in the present study. The study’s major objective is to investigate the influence of
fluid elasticity on an already complex (mixing) flow as it arises for Newtonian fluids alone. It
is then more prudent to adopt as simple a viscoelastic constitutive equation as possible. However,
the assumption of a linear constitutive behaviour makes the approach inadequate to handle
highly non-linear viscoelastic phenomena. Thus, although large strains are present in the flows
examined here, only small strain rates are assumed to be involved, making the usually important
non-linearities in the constitutive equation negligible. Such non-linearities typically stem from
convective and upper-convective terms, the dependence of viscosity and relaxation time on the
rate-of-strain tensor. Since elastic effects are the main focus in this study, elastic non-linearities
(normal stresses that lead to the Weissenberg rod-climbing phenomenon) can be quantified by
ensuring that the value of the Deborah number, De, is small. Thus, the ratio of the relaxation
time of the fluid to a typical hydrodynamic time of the flow is assumed to be small [20].
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Although Maxwell’s equation is the simplest constitutive model, it is not suitable for
polymeric solutions. In this study, the simplest constitutive equation for T is taken to
correspond to the Jeffreys model [20]

l1T: (x, t)+T(x, t)=m [g(x, t)+l2g; (x, t)], x�V(t)@G(t), (4)

where l1 and l2 (05l25l1) are two constants, the relaxation and the retardation times of the
fluid respectively. An overdot denotes partial differentiation with respect to time. The
equations governing u(x, t), p(x, t) and t(x, t) follow from Equations (1)–(4), and may be
written here as

9 ·u(x, t)=0, (5)

9 ·t(x, t)+ms92u(x, t)−9p(x, t)=0, x�V(t)@G(t), (6)

l1t; (x, t)+t(x, t)=mpg(x, t). (7)

Note that, in this case, the retardation time is related to the relaxation time and the
polymer-to-solvent viscosity ratio:

l2=
l1

1+
mp

ms

=
msl1

m
. (8)

In the limit ms�0, Equations (6) and (7) reduce to the equations corresponding to Maxwell
flow or polymer melt. The Newtonian limit is recovered if, further, l1�0.

2.2. Boundary and initial conditions

The geometry of the cavity mixer considered in this study is shown in Figure 1. It is
emphasized that the current formulation and solution method can handle other more complex

Figure 1. Schematic view of a mixing flow inside a cavity with a rotating vane in a cubic cavity of unit side. The figure
illustrates the co-ordinate system and the initial position of the vane.
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flows with moving boundary(ies). Typically, the velocity is prescribed on the moving part of
the boundary, Gm(t), and the velocity or the traction is imposed on the remaining station-
ary part Gs. In this case, G(t)=Gs@Gm(t) is the boundary surrounding V(t), with Gs being
stationary and Gm(t) undergoing rigid body rotation. The flow is thus induced by the
movement of Gm(t) and/or by the imposed velocity or traction on Gs. In the present work,
the velocity is always prescribed on Gm(t), so that

u(x, t)=um(t), x�Gm(t), (9a)

and either the velocity or the traction is imposed on the stationary part,

u(x, t)=us(t) or t(x, t)= ts(t), x�Gs, (9b)

where the traction is defined as t(x, t)s(x, t) ·n(x, t), n(x, t) being the unit normal vector
at the boundary, pointing away from V(t). As to the initial conditions, the fluid is assumed
to be at rest initially; the fluid is in a stress free state:

u(x, t=0)0, t(x, t=0)=0, x�V(t=0)@G(t=0). (10)

The assumption of initial equilibrium may seem incompatible with the assumption that the
acceleration term in the momentum equation is negligible. This is certainly true if the initial
jump in the boundary condition(s) is significant. However, since the viscosity of the fluid
and the imposed velocity are typically low, the assumption of negligible acceleration, even
initially, may still be valid. Conditions (10) greatly simplify the solution procedure for the
viscoelastic flow as will be seen below.

3. PROBLEM FORMULATION FOR A MOVING DOMAIN

In this section, the boundary integral equation is derived for the general viscoelastic flow
problem, and its numerical implementation is carried out in the context of mixing flow.
The numerical solution procedure and time marching scheme are also described. While the
formalism behind the BEM for Stokes flow is well established [39–41], that corresponding
to viscoelastic fluids is relatively unexplored. Given the linearity of the constitutive equation
(4), the governing equations can be Laplace transformed. The problem reduces to that
corresponding to Stokes flow in the frequency domain. The Voltera principle in the fre-
quency domain, which is also known as the correspondence principle [32–34], allows the
solution of a boundary value problem in viscoelasticity to be obtained from the solution of
the corresponding Newtonian problem, with the viscosity being replaced by a transformed
characteristic of the fluid. The final boundary integral equation is obtained in the time
domain.

3.1. Generalized boundary integral equation for a 6iscoelastic fluid

The first step in the procedure consists of taking the Laplace transform of the governing
equations (5)–(7). Since the fluid is incompressible, and inertia is neglected, the transformed
continuity and momentum equations retain the same form in the frequency domain

9 · ū(x, s)=0, (11)

9 · t̄(x, s)+ms92ū(x, s)−9p̄(x, s)=0, x�V(t)@G(t), (12)

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1173–1194 (1999)
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where an overbar on the velocity or stress variable designates Laplace transformation. Note
that the parameter s should be viewed as a constant, and the (transformed) variables by
ū(x, s), p̄(x, s) and t̄(x, s) represent a (transformed) flow in the original domain,
V(t)@G(t). An expression for the transformed excess stress is also obtained from Equation
(7) in terms of the transformed rate-of-strain tensor, which is mathematically equivalent to
Newton’s law of viscosity

t̄(x, s)= m̄ [9ū(x, s)+9ūt(x, s)]. (13)

If Equation (13) is inserted into Equation (12), and Equation (11) is used, then the momen-
tum equation in the frequency domain takes the same form as for Stokes flow, i.e.

m̄92ū(x, s)−9p̄(x, s)=0, m̄=
�l2s+1

l1s+1
�

m. (14)

Note that an equivalent viscosity, m̄, is now obtained, which is a function of the Laplace
parameter s. The problem is now solved similarly to the flow of a Newtonian fluid, with s
taken as a constant parameter.

In order to derive the integral representation for Equations (11) and (14), the fundamen-
tal solution for the problem is needed. For a Newtonian fluid, this singular solution
corresponds to the velocity and stress fields at a point x produced by a point force
F( (s)d(x−y) located at y. In this case, the acting force is generally a function of the
parameter s, and therefore depends on time. For a viscoelastic fluid, this also corresponds
to the same force that starts to act initially at time t=0. In other words, the force in real
time is given by Fd(x−y)d(t), where d is the Dirac delta function. Denoting the singular
solution with asterisks, and taking the Laplace transform of the viscoelastic equations over
the infinite medium, the problem reduces to that corresponding to Stokes flow in the
frequency domain

9 · ū*(x�y, s)=0, 9 · s̄*(x�y, s)=F( (s)d(x−y), (15a)

with the following boundary conditions:

�ū*(x�y, s)��0, �s̄*(x�y, s)��0, �x���. (15b)

This yields the following expressions for the transformed velocity ū*(x�y, s) and stress
s̄*(x�y, s), namely,

ū*(x�y, s)=
�l1s+1

l2s+1
�

J(x�y) ·F( (s), s̄*(x�y, s)=K(x�y) ·F( (s). (16)

The kernels, or Green’s functions, J and K are second and third rank tensors respectively,
and are given by

J(x�y)=
1

8pm

�I
r
−

rr
r3

�
, K(x�y)=

3
4p

rrr
r5 , (17)

for an unbounded three-dimensional domain, where r=x−y and r= �x−y�. Note that J
and K are respectively symmetric and anti-symmetric tensors with respect to r. The corre-
sponding integral representation is now derived similar to that corresponding to Stokes
flow. The Reciprocal (Green’s) theorem is first invoked, relating the fields (ū, s̄) and
(ū*, s̄*). The theorem is straightforward to derive [39–41] and its statement for the present
problem is as follows:

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1173–1194 (1999)



R.E. KHAYAT1180 &
V(t)

{ū(y, s) · [9y · s̄*(x�y, s)]− ū*(x�y, s) · [9y · s̄(y, s)]} dVy

=
&

G(t)

n(y, t) · [s̄*(x�y, s) · ū(y, s)− s̄(y, s) · ū*(x�y, s)] dGy, (18)

where it is noted that n(y, t), which is the normal to and pointing away from G(t), is
time-dependent for a moving domain. Substitution of the fundamental singular solution (16)
into theorem (18), using (1), removing the arbitrary vector F( , and interchanging the labelled x
and y, lead to the following integral equation in the frequency domain:&

G(t)

n(y, t) ·
��l1s+1

l2s+1
�

s̄(y, s) ·J(x�y)
n

dGy−
&

G(t)

n(y, t) · [ū(y, s) ·K(x�y)] dGy

=c(x, t)ū(x, s), x�V(t)@G(t), (19)

where c(x, t) is equal to 1 for x belonging to the interior of V(t), and for a point on the
boundary G(t), its value depends on the jump in the value of the first integral on the boundary
as the boundary is crossed. Thus, c(x, t)=1

2 if the boundary is Lyapunov smooth, which
requires that a local tangent to the boundary exists everywhere. This assumption, however, is
not valid in the vicinity of sharp corners, cusps or edges. In such cases, a separate treatment
is needed.

The inverse Laplace transform of Equation (19) is taken to obtain the desired integral
equation in the time domain. It is not difficult to see that the Laplace inversion of Equation
(19) leads to the following time-dependent integral equation:&

G(t)

n(y, t) ·
�

l1

(s(y, t)
(t

+s(y, t)
n

·J(x�y) dGy

−
&

G(t)

n(y, t) ·
�

l2

(u(y, t)
(t

+u(y, t)
n

·K(x�y) dGy=c(x, t)
�

l2

(u(x, t)
(t

+u(x, t)
n

, (20)

for the class of problems envisaged in the present study.
In the derivation of Equation (20), the fluid is tacitly assumed to be in a state of rest

initially, or more particularly, in a stress-free state. As mentioned earlier, this assumption
greatly simplifies the formulation. Indeed, the inclusion of an initial stress condition leads to
an additional term in Equation (13) when the Laplace transform of the constitutive equation
(2) is taken. If the initial stress is not generally a constant, thus is dependent on position, a
volume integral emerges, which must be added to the integral equation (19) in the frequency
domain. Correspondingly, a volume integral emerges in Equation (20) in the time domain. It
is obvious that the presence of a volume integral complicates matters significantly, and may
not be necessary for a wide range of practical flow problems.

3.2. Limit cases

If the fluid is a polymer melt rather than a polymer solution, then l2�0, and Equation (2)
reduces to the Maxwell constitutive model. The corresponding integral equation for a Maxwell
fluid is obtained by taking [equivalently from Equation (8)] the limit m2�0 in Equation (20),&

G(t)

n(y, t) ·
�

l1

(s(y, t)
(t

+s(y, t)
n

·J(x�y) dGy−
&

G(t)

n(y, t) ·u(y, t) ·K(x�y) dGy

=c(x, t)u(x, t), x�V(t)@G(t), (21)
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In addition, in the limit l1�0, Eqaution (21) reduces to the integral equation corresponding
to Stokes flow&

G(t)

t(y, t) ·J(x�y) dGy−
&

G(t)

n(y, t) ·u(y, t) ·K(x�y) dGy=c(x, t)u(x, t), x�V(t)@G(t),

(22)

Unlike Equations (19) or (20), Equation (22) relates directly the velocity field, u(x, t), at any
point inside the fluid region, V(t), or on the boundary, G(t), to the traction, t(x, t). The
situation is quite different for the viscoelastic flow problem.

The major difficulty in dealing with the solution of Equation (20) is the explicit presence of
the stress tensor rather than the traction vector, as in Equation (22). Equation (20) is valid for
the general transient viscoelastic flow with moving boundary, where the normal to the
boundary changes with time. A direct relation between velocity and traction is not possible
unless the normal vector is constant with time. If the domain occupied by the fluid is fixed,
G(t)=G, then the traction may be directly related to the velocity as for Stokes flow. In this
case, Equation (20) reduces to&

G

�
l1

(t(y, t)
(t

+ t(y, t)
n

·J(x�y) dGy−
&

G
n(y) ·

�
l2

(u(y, t)
(t

+u(y, t)
n

·K(x�y) dGy

=c(x)
�

l2

(u(x, t)
(t

+u(x, t)
n

, x�V@G. (23)

Note that the flow field may still be time-dependent even though the domain does not change
with time. Additional simplifications to Equation (20) may be made in other limit flow cases
of relevance to the present problem.

4. NUMERICAL IMPLEMENTATION AND SOLUTION PROCEDURE

The solution of Equation (20) for a general class of cavity mixing problems is first discussed,
and then applied to the present problem. A time marching scheme is implemented to discretize
the time derivatives in stress (traction) and velocity. The numerical solution of the resulting
(discretized) integral equation(s) turns out to be similar to that corresponding to Stokes flow.

4.1. Integral equation for ca6ity mixing

Consider again cavity mixing, which is typically illustrated in Figure 1. It is assumed that the
velocity is always imposed on the stationary and moving boundaries Gs and Gm(t) respectively.
In this case, G(t)=Gs@Gm(t). On Gs, stick conditions apply so that the velocity is zero and
Equation (9b) leads to us(t)=0, Öt. But if us(t) vanishes, so does its (time) derivative. Similarly,
both um(t) and its derivative are specified on Gm(t). Since the velocity is completely specified
on the boundaries, then Equation (20) will be solved to give the stress or traction on G(t). It
is convenient to introduce generalized traction and velocity as

P(x, t)=n(x, t) ·
�

l1

(s(x, t)
(t

+s(x, t)
n

,

U(x, t)=l2

(u(x, t)
(t

+u(x, t), (24)
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so that Equation (20) reduces to&
Gs@Gm(t)

P(y, t) ·J(x�y) dGy−
&

Gm(t)

n(y, t) ·Um(y, t) ·K(x�y) dGy

=c(x, t)
!0,

Um(x, t),
x�V(t)@Gs

x�V(t)@Gm(t)
. (25)

Consider now the evaluation of c(x, t) for x belonging to G(t)=Gs@Gm(t). At each time
step, t, the value of c(x, t) depends solely on the geometry of the boundary involved. Thus,
c(x, t)=1

2 for a smooth boundary. More generally, if a uniform velocity field is applied over
the domain V(t)@G(t), such that u(x, t)=ue, where u is the constant magnitude of the
velocity and e is the direction of the flow, then all derivatives (including tractions and stresses)
must vanish. Hence, at any time t, Equation (25) reduces to

c(x, t)=ee:
&

G(t)

n(y, t) ·K(x�y) dGy, x�G(t). (26)

Equation (25) is a Fredholm integral of the second kind, with P(x, t) being the unknown.
However, the traction at the boundary is yet to be determined since it is the variable of
primary interest in the present study.

4.2. Time marching scheme

Once P(x, t) is determined from Equation (25), the time derivative of the stress tensor is
approximated by finite difference. The Euler scheme is used and higher-order terms in the time
increment Dt are neglected:

P(x, t)=n(x, t) ·
�

l1

(s(x, t)
(t

+s(x, t)
n

:
�l1

Dt
+1

�
t(x, t)−

1
Dt

n(x, t) ·s(x, t−Dt)+O(Dt). (27)

This discretization, however, does not yet give t(x, t) at the boundary, which is the quantity of
primary interest here, unless s(x, t−Dt) is known. The stress at the previous time step can be
determined from an additional integral equation that can be derived from Equation (25)
similar to Stokes flow [42]. However, a further approximation is used, which greatly simplifies
the numerical computation; the normal vector at the current time is expanded around the
previous time step. Only the leading term in the Taylor expansion of the normal vector is kept,
such that n(x, t) ·s(x, t−Dt): t(x, t−Dt)+O(Dt), and Equation (27) is reduced, leading to
the expression for the current traction:

t(x, t):
DtP(x, t)+ t(x, t−Dt)

l1+Dt
+O(Dt). (28)

This approximate expression is of course accurate as long as the time increment, Dt, is small.

4.3. Solution procedure

The current formulation and its computer implementation are intended for typical mixing
problems. The geometry involved is usually complex and three-dimensional. Typically, a
mixing process involves the motion of part of the boundary, such as in lid-driven cavity flow,
or the presence of a second moving boundary, such as a rotor or a stirrer (Figure 1). It is
obvious that the BEM becomes particularly advantageous over domain methods in the
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presence of a moving obstacle because the computational domain evolves with time. A
conventional domain method, such as the FEM, generally necessitates a continuous remeshing
of the inner domain; for example, the volume domain located between the rotor and the cavity
needs remeshing, although for some problems the volume meshing can be constant as
mentioned in Section 1. The BEM requires the discretization of the rigid boundaries only. The
discretization of the moving boundary (rotor) does not pose any difficulty. The kinematics of
each of the discretization elements is known (imposed) given the boundary is undergoing rigid
body motion. In the present work, the motion of the moving boundary is always known so the
velocity will be prescribed on Gm(t).

Equation (25) may be solved using constant or higher-order elements. In this study, the
simplest form of the BEM is adopted, and the boundary is discretized into a finite number of
constant triangular elements. The velocity and traction are thus assumed to be constant over
each surface element and equal to the values at the centroid. In this case, since there are no
corner nodes on which the unknown variables are evaluated, the value of c(x, t)=1

2. The
resulting discretized equations represent a set of linear algebraic equations in the velocity and
traction at the boundary once the integrals are evaluated over each element. The evaluation of
the integrals is carried out numerically using Gauss quadrature formulae in the absence of
singularities. Since the kernels J and K have integrable singularity at x=y, some care must be
taken in the numerical evaluation of the singular integrals. Common procedures either cut out
a region surrounding the singularity and perform the integration analytically, or subtract the
singularity directly in the numerical approximation of the integral. In the case of constant
elements, the analytical evaluation of the singular integrals is straightforward in two dimen-
sions. For the present three-dimensional flow, the singular integrals can also be evaluated
analytically through the Cauchy Principle Value theorem [42]. The resulting system of linear
equations is solved using the lower–upper (LU) factorization method.

5. RESULTS AND DISCUSSION

In this section the solution of Equation (25) is presented for transient three-dimensional flows
of Newtonian and viscoelastic fluids. The accuracy and convergence of the code are first
discussed. The time-dependent behaviour of the traction at the cavity wall and rotor of the
mixer is monitored with time for different fluids.

5.1. Assessment of con6ergence and accuracy

The accuracy and CPU requirement of the method were assessed by comparing results based
on the BEM with those based on the FEM using the commercial code POLYFLOW™. The
comparison was primarily conducted for the solution of Equation (25). All computations were
carried out on an IBM (RISK) 590 machine with a speed of 130 MFLOPS (Linpack). The
swapping in this case is minimal or non-existent. The computation domain corresponds to a
cubic cavity of unit side length, given by (x, y, z)� [0, 1]. The face y=1 is assumed to move at
a velocity (1, 0, 0). All dimensions are relative. Stick conditions are imposed on all faces except
at the side z=1, which is assumed to be lubricated (or a plane of symmetry). On this side, the
velocity distributions based on the BEM and FEM are compared. In this case, the three velocity
components (ux, uy, uz) vanish on all faces except at the face z=1, where uz=0 and tx= ty=0.

Most flow activity was concentrated around the edges of the cubic cavity. The symmetry of
the flow field with respect to the plane x=0.5 was preserved, reflecting the robustness of the
solution procedure. Three FEM mesh sizes were used, corresponding to a total number of
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internal and external nodes N=64, 216 and 729, and five BEM meshes corresponding also to
a total number of internal and external nodes N� [216, 1134]. Note that the internal nodes in
the case of the BEM are not used in the computation but are mentioned here for clarity. In
fact, thecomparisonismeaningfulonly if thetotalnumberofnodes forbothmethods iscomparable.
It is understood that although the number of degrees of freedom, corresponding to a given mesh
size, can be relatively much smaller for the BEM than for the FEM, the resulting discretized
algebraic system is full in the former case and sparse in the latter. Thus, it is difficult a priori
toanticipatewhichof the twomethods ismoreadvantageousregardingspaceandtimerequirement.

The flow field was monitored in the plane of symmetry (z=1), which follows closed streamlines.
The location of the field centre depends on the mesh size taken in the computation, and is taken
here as a measure for convergence. Regardless of the mesh size used, the centre is always located
at x=1

2, reflecting the robustness of the method. The height of the centre depends strongly on
mesh size. This dependence is reported in Table I. Convergence for the FEM is reasonably achieved
between the second and third meshes. The FEM results are accurate only for the finest mesh
(N=729) used when compared with the BEM results. The calculation based on a finer FEM
mesh was also attempted, but storage problems were encountered. Calculations based on the
BEM indicate that convergence is relatively faster. The three finest BEM meshes (N=720, 990
and 1134) lead essentially to the same results (within 1.4% error), and may then be regarded
as the exact solution to the problem. This convergence is also confirmed from the trend based
on the FEM solutions. Comparison between the FEM with N=729 and the BEM with N=720
tends to confirm, in turn, the general observation that the BEM is more accurate than the FEM
since the solution has already converged in this case. This observation is usually well established
for two-dimensional problems.

The (absolute) CPU required for each case and method studied was also monitored. The FEM
appears to be more time consuming than the BEM when the same number of nodes is used.
It is clear from the two curves in the figure that the CPU requirement tends to grow much faster
for the FEM (�N2.36) than for the BEM (�N1.2). Although these comparisons appear to be
conclusive, they should not be regarded as so. First, on the one hand, additional calculations
must be carried out involving a geometry other than that of a cube. The present cubic cavity
represents typically the case of a bulky body where the ratio of volume-to-surface elements
is of the same order in number. In this case, the BEM has the clear advantage over the
FEM given the relatively large number of volume elements involved. On the other hand, cases
involving thin cavities where the ratio of the number of volume to surface elements is small imply

Table I. Comparison between the BEM and the FEM for simple lid-driven
three-dimensional cavity flow of a Newtonian fluid

Method Number of elements Centre height

BEM 216 0.6815
0.7444486

720 0.7518
900 0.7593

1134 0.7630

64FEM 0.6778
216 0.7259
729 0.7452

The table displays the total number of elements and the height of the flow centre in the
plane z=1.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1173–1194 (1999)



MULTIPLY CONNECTED CAVITY FLOWS 1185

a relatively large number of boundary elements. In this case, the BEM loses some of its advantage
over the FEM. Second, an accurate comparison and asymptotic storage assessment between the
two algorithms is difficult to achieve since the present BEM code and the POLYFLOW™ code
may not be constructed in a similar manner. The main reliable information that one may retain
from the comparison is the rate at which the CPU grows in each of the two cases.

5.2. Transient rotating flow and non-linear dynamics

Consider now the three-dimensional flow inside the rotating mixer shown in Figure 1. The
cubic cavity is of unit side: −0.55x50.5, −0.55y50.5, −0.55z50.5, with the origin
coinciding with the centre of the cube. The flow is induced by the rotation of a flat rectangular
rotor (vane) initially occupying the region −0.15x50.1, −0.45y50.4, −0.45z50.4 as
illustrated in the figure. At t=0, the rotor is set in counter-clockwise motion (around the vertical
y-axis) at an angular speed of 1 rev s−1. Since the fluid responds immediately to the motion
of the rotor, the flow field is the same for both Newtonian and (linear) viscoelastic fluids. For
this reason, viscoelasticity only influences the evolution of stress or traction at the rotor and
inner cavity wall, which will now be examined under conditions of complete stick at the boundaries.

The evolution of the traction at the rotor tip, at the point located initially at (0.0, 0.0, 0.4),
is first monitored over a period of 2 rev. Both Newtonian fluids (l1=0 s) and viscoelastic fluids
of the Maxwell type, with l1=0.1, 0.2 and 0.3 s, are examined. The evolutions of the traction
components tX and tZ are shown in Figures 2 and 3 respectively. For a Newtonian fluid, in contrast
to viscoelastic fluids, there is a small but non-zero tX value at t=0 (Figure 2) equal (in magnitude)

Figure 2. Evolution of tX at the tip of the rotor, at the point initially located at (0.0, 0.0, 0.4). The long-term signal
period is 1 s, corresponding to a full revolution of the rotor. Newtonian fluid (—), Maxwell fluid with l1=0.1 s (---),

0.2 s (- - -) and 0.3 s ( · · · · ). These curve legends will also be used for Figures 5–7, 10 and 11.
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to the slope uX,Z(0.0, 0.0, 0.4). The periodic behaviour in tX is clearly depicted from Figure 2.
For l1\0 s, tX increases from zero, and eventually settles in turn into a similar periodic signal
with the same frequency as the Newtonian signal. There is a phase shift relative to the
Newtonian signal that increases as the level of fluid elasticity increases. The amplitude of the
stress decreases as the fluid becomes more elastic. The figure also shows that any modulation
or non-linear behaviour in the time signature tends to disappear as l1 increases.

The evolution of tZ at the same location is shown in Figure 3. In this case, the difference in
initial behaviour between Newtonian and viscoelastic flows is more obvious. This difference is
most probably due to the effect of the (hydrostatic) pressure since uZ,Z is not expected to be
large compared with uX,Z at (0.0, 0.0, 0.4) over a 0.1 gap between the tip of the rotor (at the
plane z=0.4) and the opposite cavity side (z=0.5). The component tZ increases monotonically
with time for viscoelastic fluids until periodic behaviour is attained.

Both Figures 2 and 3 reflect clearly a non-linear behaviour in the evolution of the traction.
This non-linear character is further evidenced when the long-term phase portrait is examined
after transient effects die out. This is depicted from Figure 4, which shows the trajectories in
the (tX, tZ) plane for Newtonian and viscoelastic fluids. The phase trajectories clearly illustrate
the periodic nature of the force signal with a decrease in amplitude as l1 increases. More
importantly, the non-linear character of the signal decreases gradually for the viscoelastic
fluids, until the signal becomes essentially linear for l1=0.3 s. The initial growth of the
viscoelastic traction, and its approaching the Newtonian limit with a phase shift, are reminis-
cent of problems in sudden inception of steady state and oscillatory plane and rotating Couette
flows [20].

Figure 3. Evolution of tZ at the tip of the rotor, at the point initially located at (0.0, 0.0, 0.4). The long-term signal
period is 1 s, corresponding to a full revolution of the rotor.
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Figure 4. Long-term phase–plane behaviour of the traction components tX and tZ at the tip of the rotor, at the point
initially located at (0.0, 0.0, 0.4).

From Figures 2 and 3, one may hastily conclude that the evolution of the x and z
components of the traction at the tip of the rotor typically represent the overall behaviour of
the traction (magnitude) or components in other directions. However, the behaviours of the
tangential and normal components hardly resemble those in the figures. From the values of tX

and tZ, the evolution of the tangential and normal forces, tt and tn respectively, are determined.
These components are of more physical and practical relevance to mixing. While the behaviour
of the Newtonian signature for tt is similar to that of tX and tZ, that of the viscoelastic
components, especially the early transients, is drastically different as presented in Figure 5. For
l1\0 s, there is generally a sharp initial drop in the value of tt with an undershoot beyond
which the force signature settles into periodic motion. As the level of elasticity increase, with
l1 remaining small, the mean value of oscillation decreases monotonically with l1. However,
this monotonic response is broken as l1 exceeds a critical value. This behaviour is clearly
depicted in Figure 5 as the mean value for l1=0.3 s is higher than that corresponding to
l1=0.2 s.

The evolution of tn reported in Figure 6 also reveals unexpected and interesting dynamics for
the same viscoelastic fluids considered above. Unlike tX and tZ, the Newtonian normal force
is always positive, with a frequency four times larger (see Figures 2 and 3). Typically, for a
viscoelastic fluid, tn increases initially from zero and settles into periodic behaviour with
smaller amplitude than for a Newtonian fluid. For l1\0.1 s, there is an overshoot before
periodic motion sets in. Obviously, this is not related to the overshoot resulting from the
non-linear elastic normal stresses (that leads to the well-known Weissenberg rod-climbing
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Figure 5. Evolution of the tangential force tt at the tip of the rotor, at the point initially located at (0.0, 0.0, 0.4). The
long-term signal period is 0.5 s, corresponding to half a revolution of the rotor.

Figure 6. Evolution of the normal force tn at the tip of the rotor, at the point initially located at (0.0, 0.0, 0.4). The
long-term signal period is 0.25 s, corresponding to a quarter revolution of the rotor.
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Figure 7. Long-term phase–plane behaviour of the normal and tangential forces tn and tt at the tip of the rotor, at
the point initially located at (0.0, 0.0, 0.4) for a Maxwell fluid [0.05l1 (s)50.3].

phenomenon) in sudden inception flows [20]. The evolution of the viscoelastic normal traction
should thus be interpreted with some caution since the role of the more realistic non-linear
normal stresses is not accounted for in the present formulation. Note that, in contrast to the
tangential component, the normal traction oscillates around a mean value that decreases
monotonically as l1 increases.

The long-term phase trajectories in the (tt, tn) plane are shown in Figure 7. The Newtonian
orbit (Figure 7(a)) is multiply connected, reflecting strong non-linearity and the period
doubling (see also Figures 5 and 6). The non-linear character gradually disappears as l1

increases from zero (Figure 7(b)–(d)), confirming what has already been established in Figures
5 and 6.

The spatio-temporal behaviour is further examined by considering the corresponding power
spectra reported in Figure 8. All power spectra in the figure show very similar frequency
distributions despite the different temporal signatures and phase–plane trajectories. They all
show the presence of one dominant frequency and its harmonics. There is at least one
subharmonic corresponding to half the dominant frequency, confirming the presence of a
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Figure 8. Long-term power–density spectra of the normal force tn at the tip of the rotor, at the point initially located
at (0.0, 0.0, 0.4) for a Maxwell fluid [0.05l1 (s)50.3].

period doubling. The dominant frequency, its harmonics and subharmonics are essentially the
same for both Newtonian and viscoelastic fluids. They just diminish in intensity as fluid
elasticity increases.

The evolution of the force acting on the outer boundary is also examined, in particular, in
the middle of the face z=0.5. The behaviour of the normal force tZ at the point (0.0, 0.0, 0.5)
is reported in Figure 9, which seems to be much more irregular than that of the force at the
tip of the rotor. In this case, periodic behaviour sets in almost after 1 rev and is equal to 0.5
s (0.5 rev). The amplitude of the viscoelastic signal is considerably smaller. This is somewhat
contrary to what one expects since, the addition of elasticity, in lubrication for instance, tends
to increase the normal force. But again, one may have to account for the non-linear normal
stresses to deduce the global picture. The evolution of the tangential force tX at (0.0, 0.0, 0.5)
is shown in Figure 10. It is interesting to observe from Figures 9 and 10 that the overall
amplitude of tX is much smaller than that of tZ and fluctuates less. If the contribution to tZ

stems mainly from the hydrostatic pressure, then Figure 9 shows a strong fluctuation in
pressure. Obviously, tX is always negative as the friction force opposes the (local) motion in the
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Figure 9. Evolution of the normal force tZ in the middle of the face z=0.5 at (0.0, 0.0, 0.5). The long-term signal
period is 0.5 s, corresponding to half a revolution of the rotor.

Figure 10. Evolution of the tangential force tX in the middle of the face z=0.5 at (0.0, 0.0, 0.5). The long-term signal
period is 0.5 s, corresponding to half a revolution of the rotor.
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Figure 11. Long-term phase–plane behaviour of the normal and tangential forces tn and tt at (0.0, 0.0, 0.5) for a
Maxwell fluid [0.05l1 (s)50.3].

positive x-direction. The viscoelastic flow, at least for the range of relaxation times considered,
requires more than one full revolution (1 s) to settle into periodic motion. In contrast to the
non-linearities in the traction components at the tip of the rotor (Figure 8), the non-linear
dynamics for the traction at the cavity face is extremely complicated. This is obvious from the
time signatures in Figures 9 and 10, but is also further evidenced in Figure 11, which shows
the phase trajectories in the (tX, tZ) plane.

6. CONCLUSION

In this study, the applicability of the BEM to cavity mixing is demonstrated for Newtonian
and polymer solutions obeying the Jeffreys model. The mixing process is typically unsteady
and involves the presence of a moving boundary (vane). The performance of the BEM is
assessed against that of the FEM (using POLYFLOW™) for simple lid-driven cavity flow of
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a Newtonian fluid. The BEM appears to require less CPU than the FEM for a mesh involving
the same number of nodes (internal and external). A direct quantitative comparison is difficult
to attain, however, given that the two numerical algorithms are designed differently. What is
more conclusive is the rate at which CPU requirement increases with the number of nodes. The
rate turned out to grow like N2.36 for the FEM and like N1.2 for the BEM.

The rotating flow is investigated as induced by the action of a vane inside a rectangular
cavity. The influence of viscoelasticity is clearly illustrated in the case of sudden inception in
the motion of the vane. The evolution of the tractions at the rotor tip reveals complex
dynamics and transient behaviour. While the traction for a Newtonian fluid settles into
periodic motion right from the beginning, the traction for a viscoelastic fluid is found to
undergo a transient evolution before it reaches periodic behaviour. The viscoelastic signal
exhibits generally a phase shift and has an amplitude that decreases as the level of fluid
elasticity increases. While the constitutive equations used (for creeping Newtonian fluids and
viscoelastic fluids of the Maxwell type) are linear, the response of the traction is highly
non-linear.
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